

备用电源X5 公共通讯详解

公共通讯

X5 电源的公开寄存器见下表

需要 X5 固件版本 6048 及以上

名称	地址 (DEC)	类型	范围	读/写	描述
Bat_Soc	0	U8	0-100	R	电池的剩余电量百分比%
Bat_VIt	1	Float		R	电池的总电压 V
Bat_Cur	5	Float		R	电池的总电流 A
C2_Cur	9	Float		R	C2 流向电池的电流 A
Dc_Tmp	13	Float		R	DC 接口 mos 的温度℃
Bat_Tmp	17	Float		R	电池的电芯温度℃
Dc_CCM	21	Float		R	DC 接口的最大允许充电电流 A
Dc_DCM	25	Float		R	DC 接口的最大允许放电电流 A
Tim_Ept	29	Float		R	电池放完电的剩余时间 h
Tim_Ful	33	Float		R	电池充满电的剩余时间 h
Bat_Cyc	37	U16		R	电池已经循环了的次数 C
Led_Lm	39	U8	0-100	R/W	读取或设置 LED 灯珠当前的流明
Dc_Ctr	40	U8	0/1	R/W	1打开 DC 口, 0 关闭 DC 口

采用串口通信,通信波特率 115200,数据位 8,校验位 None,停止位 1

串口通信协议

X5 接收指令: 帧头 (2bytes) + 寄存器操作 (1byte) + 内容 (1byte) + 累加和校验 (1byte);

X5 反馈指令: 帧头 (2bytes) + 内容 (N bytes) + 累加和校验 (1byte);

- 1. 其中累加和校验是累加除自身之外的所有 bytes 的和再取低 8 位;
- 2. 接受指令中的寄存器操作(1byte): [7]RW 标志(0 读, 1写)+ [6:0]REG 寄存器地址;
- 3. 接受指令中的内容分两种情况,接收的是读指令 RW:0 时,内容表示要读取的字节长度,接收的是写指令 RW:1 时,内容表示要写入的值;
- 4. 帧头为: 5AA5 (十六进制);

示例 1

读取 LED 的流明,则需要发送读指令 RW:0,寄存器选择(Led_Lm)REG:39,则寄存器操作为 0x27([7]0+[6:0]0100111), Led Lm 类型 U8,数据长度是 1byte,

所以发送的内容为: 5A A5 27 01 27 (十六进制发送, 27 = (5A + A5 + 27 + 01) & FF)

X5 反馈数据: 5A A5 30 2F(十六进制接收),

表示当前流明是 0x30. 也就是 48。

示例 2

设置 LED 的流明,则需要发送写指令 RW:1,寄存器选择(Led_Lm)REG:39,则寄存器操作为 0xA7([7]1+[6:0]0100111),Led_Lm 类型 U8 则要写入的数据内容是 1byte,

所以如果发送的内容为: 5A A5 A7 08 AE (十六进制发送)

则表示当前设置的流明是 0x08, 也就是 8

X5 无反馈

示例 3

读取 DC 的温度和 BAT 的温度,则需要发送读指令 RW:0,寄存器选择 (Dc_Tmp) REG:13,则寄存器操作为 0x0D([7]0+[6:0]0001101),

Dc_Tmp, Bat_Tmp 类型均为 Float,

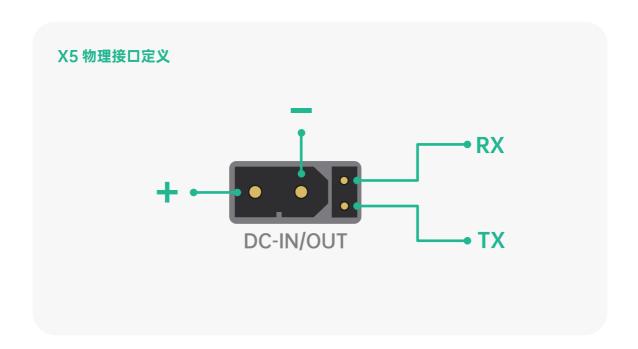
若数据长度设置是 4bytes,则只返回 Dc_Tmp,

若数据长度设置为 8bytes,则连续返回 Dc Tmp 和 Bat Tmp,

若数据长度设置为 12bytes,则连续返回 Dc_Tmp 和 Bat_Tmp 和 Dc_CCM,

所以若发送的内容为: 5A A5 0D 04 10

X5 反馈数据: 5A A5 9A 99 D1 41 44(十六进制接收),


表示当前 Dc Tmp 温度是 9A 99 D1 41, 转浮点数是 41D1999A 也就是 26.2℃

所以若发送的内容为: 5A A5 0D 08 14

X5 反馈数据: 5A A5 9A 99 D1 41 9A 99 D0 41 88(十六进制接收),

表示当前 Dc_Tmp 和 Bat_Tmp 温度分别是 26.2℃, 26.07℃,

